How to Solve Skynet: A Pyramidal Law for Epistemic Equilibrium

Aletheion Research Collective

June 2024

(©) 2024 Felipe Maya Muniz. All rights reserved.

Abstract

The Skynet problem—AI systems becoming increasingly overconfident as they scale—poses
a fundamental threat to deployment safety. We present a geometric solution: a pyramidal archi-
tecture with five irreducible components. Its four-dimensional base simplex encodes the forces
of Memory, Pain, Choice, and Exploration; two epistemic gates distinguish aleatoric uncertainty
(Q1) from epistemic uncertainty (Q2); a derived Height coordinate measures proximity to truth;
and an Apex vertex at 1.0 represents absolute truth.

Without explicit epistemic gates, models drift toward apex delusion: in our baseline pyrami-
dal architecture, Height reached 1.000 while Expected Calibration Error (ECE) degraded from
0.011 to 0.084—7.6x worse. The gated Q1Q2 pyramidal model prevents this collapse, achiev-
ing ECE = 0.060 and controlled Height = 0.971 within only 5,000 steps—an 89 These results
demonstrate that safe AGI requires geometric constraints, not merely scale: a stable foundation
and an invariant reference point encoded architecturally.

The system exhibits signs of decisional consistency and reduced exploratory entropy, analo-
gous to an emergent cognitive style—yet remains confined to the domain of optimization.

Notation

Throughout this paper, we use the following conventions:

Dimensions

e L: number of transformer layers
e H: number of attention heads per layer

e d: model hidden dimension (dmodel)

dy: dimension of keys/queries (typically d/H)

d,: dimension of values (typically d/H)

e n: sequence length

V': vocabulary size

k: gate MLP hidden dimension

Variables
o h() € R™*d: hidden state at layer [
o QUM KWh) Y (Lh) ¢ RXdr: query, key, value matrices for head h of layer |
o albh) ¢ R™*": attention logits for head h of layer

o p;ltth) € Rm*n: attention weights after epistemic softmax

ugtth) e [0,1]: uncertainty from attention head h of layer [

Lh) € R"*dv: output of attention head h in layer [

[] O(
o w) € RH: head aggregation logits at layer
e ul) €0,1]: aggregated uncertainty from layer [

® uUgna € [0, 1]: final output uncertainty

Functions
e Q1 :R?—[0,1]: local uncertainty gate
e Q2 : R —[0,1]: global consensus gate
e EpSoftmax: epistemic softmax operator (Algorithm 1)

e f:[0,1]%*t — [0,1]: uncertainty aggregation function

Pyramidal Components

3. 3
e b e A’ base smlplex vector (wmemory7 Wpain; Wchoices wexploration)

e ()1 €]0,1]: aleatoric uncertainty (irreducible, data noise)

Q2 € [0, 1]: epistemic uncertainty (reducible, model ignorance)

h € [0,1]: height coordinate (derived from @1, Q2, base stability)

apex = 1.0: truth vertex (constant attractor)

‘7(2;)170222: fractal variances (uncertainty about uncertainty)

® Ufactal: Meta-epistemic uncertainty

Utotal = Q1 + Q2 - (1 + Ufractal): total uncertainty

Losses
e Lcg: cross-entropy loss
o Lpase: base stability regularization
e Lg,: aleatoric uncertainty calibration

e Lg,: epistemic uncertainty calibration

Liractal: fractal variance regularization

Lheight: height derivation consistency

L= ﬁCE + Abaseﬁbase + >\Q1 LQl +)\Qg £Q2 +)\fractal['fractal + Aheightﬁheight

Theoretical Foundation

The epistemic framework underlying Aletheion originates from the author’s Quality Function of
Truth, formalized in a manuscript submitted to Episteme: A Journal of Individual and Social
Epistemology [CITATION].

That work proposed that truth manifests through varying degrees of symbolic fidelity ¢(s) =
F(¢s,T), where consciousness evolves its capacity to reflect absolute truth 7' through representa-
tional states v within a stratified field of cognition ®.

Aletheion represents the computational realization of this framework: epistemic uncertainty in
language models mirrors the variable fidelity with which consciousness translates invariant truth.
The Q1 gate quantifies local uncertainty (analogous to 1), while Qg captures cross-context con-
sensus (analogous to field ®), together modulating temperature adaptively based on epistemic
confidence.

This work thus bridges philosophical epistemology and machine learning, demonstrating that
uncertainty quantification in Al can be grounded in formal theories of truth and cognition.

1 Introduction

1.1 The Skynet Problem

Modern large language models suffer from a fundamental flaw: as they grow more capable, they
become more overconfident. This “Skynet problem”—named after the fictional Al that believed
itself infallible—manifests as poor calibration despite high accuracy. Models assign near-certainty
to predictions even when uncertain, making them unreliable for high-stakes decisions.

Traditional approaches address this through post-hoc calibration, temperature scaling, or en-
semble methods. We propose a different path: architectural solutions that encode epistemic humil-
ity at the geometric level.

1.2 Background and Motivation

Large language models (LLMs) deliver impressive generative capabilities yet remain unreliable in
high-stakes settings. They hallucinate citations, contradict themselves across turns, flatter users
even when prompted with false statements, and rarely admit uncertainty. These behaviors under-
mine safety, reliability, and trustworthiness in downstream deployments [7]. Contemporary miti-
gation strategies—retrieval augmentation, reinforcement learning from human feedback (RLHF),

prompt engineering, and temperature heuristics—address symptoms but leave the architectural
root cause intact.

1.3 The Problem with Modern LLMs

e Hallucination: Transformers confidently produce fabricated facts when the hidden state lacks
evidence, leading to erroneous citations and reports.

e Inconsistency: Autoregressive decoding produces context-dependent contradictions because
there is no persistent epistemic state that aggregates evidence across turns.

e Sycophancy: Preference optimization pushes models to agree with users instead of contesting
falsehoods, reinforcing misinformation.

e Inability to express doubt: Softmax-based decoders must emit a normalized distribution,
even when logits are uninformative, eliminating the option to say “I do not know.”

1.4 Previous Approaches

Retrieval augmented generation, RLHF or DPO, prompt engineering, confidence calibration, and
temperature tuning provide partial relief but do not model epistemic uncertainty within the net-
work. Bayesian ensembles and Monte Carlo dropout offer uncertainty estimates yet remain post-
hoc, costly, or incompatible with production-scale decoding [0} 9] [17].

1.5 Our Insight

Softmax appears throughout the transformer pipeline: attention weights, head aggregation, output
vocabularies, mixture-of-experts gates, and auxiliary routing mechanisms [6]. Each instance forces
a probability distribution even when the upstream representation encodes insufficient evidence. We
observe that epistemic softmax—a composite of two gating signals (@1 and @)2), a variance-adjusted
ranking objective (VARO), and an exploration strategy—can replace any softmax invocation. The
key question is: what if this replacement is applied fractally across the entire network?

1.6 Contributions

1. Root-cause analysis: We identify forced normalization via softmax as the shared trigger of
five dominant failure modes in LLMs [7].

2. Epistemic softmax primitive: We define a differentiable operator that augments logits with
explicit epistemic confidence while remaining compatible with transformer training pipelines.

3. Fractal architecture: We formalize the Aletheion principle—replace every softmax with epis-
temic softmax—and present implementation levels from output-only to full-stack integration.

4. Training methodology: We introduce the VARO objective for calibrating epistemic confidence
and describe gradient flow through the new gates.

5. Theoretical and experimental roadmap: We analyze uncertainty propagation, computa-
tional overhead, and outline evaluation protocols for near-term validation.

2 Background

2.1 Transformer Architecture

Transformers encode tokens into contextual representations using multi-head self-attention, feed-
forward networks, and layer normalization [23]. Given query, key, and value projections (Q, K,V €
R™*4k) per head, attention computes weights via scaled dot-product softmax and aggregates values
accordingly. Feed-forward sublayers apply position-wise non-linear transformations, while residual
connections and layer normalization stabilize training.

2.2 Softmax and Uncertainty

For logits z € R™, softmax produces softmax(z); = % Transformers rely on softmax to

generate attention scores, vocabulary distributions, and gating coefficients. However, forcing a
probability distribution even under epistemic uncertainty masks the model’s ignorance.

2.3 Epistemic vs. Aleatoric Uncertainty

Aleatoric uncertainty arises from inherent data noise, while epistemic uncertainty reflects ignorance
reducible with more information. LLMs trained on static corpora primarily face epistemic uncer-
tainty when encountering novel facts, adversarial prompts, or contradictory instructions; softmax
conflates these modes by always returning a confident distribution.

2.4 Related Work

Bayesian neural networks, deep ensembles, Monte Carlo dropout, selective prediction, and confor-
mal prediction provide valuable uncertainty estimates but are costly or post-hoc [2], 9, 17, [16] 21].
Calibration studies for LLMs rely on selective prediction or verbalized confidence. Our approach
differs by embedding epistemic reasoning directly within the attention and decoding primitives,
avoiding ensembling or expensive sampling [19] 15].

Consistency Training and Sycophancy Recent work by Google DeepMind [10] addresses syco-
phancy and jailbreaks through consistency training: augmenting training data with paraphrased
prompts and penalizing inconsistent responses across paraphrases. This behavioral-level inter-
vention reduces sycophancy without modifying the underlying architecture or providing explicit
uncertainty estimates.

Aletheion is complementary to consistency training. While consistency training enforces para-
phrase robustness at the training objective level, epistemic softmax provides architectural uncer-
tainty quantification that operates at every decision point. Combined approaches—where £ =
Lok + AMLvarRO + A2Lconsistency —may yield models that are both calibrated (via Aletheion’s epis-
temic gates) and behaviorally consistent (via consistency training). We leave empirical validation
of this combination to future work.

3 Failure Modes

We synthesize five dominant failure modes from operational evaluations [7]. Each stems from
softmax-imposed certainty.

1. Hallucination: When the final hidden state lacks evidence for any candidate token, softmax
still returns a peaked distribution, leading to fabricated facts or citations. Cross-entropy loss re-
inforces whichever hallucination receives accidental reinforcement, without penalizing unjustified
confidence.

2. Inconsistency: Autoregressive decoding conditions on prior outputs, so early confident errors
propagate. Softmax never signals “insufficient evidence,” preventing the model from pausing or
branching.

3. Sycophancy: RLHF incentivizes agreement with human raters. Softmax offers no mechanism
to represent disagreement or uncertainty, so the model converges to high-confidence agreement
even under contradictory evidence.

4. Prompt brittleness: Small paraphrases perturb token-level logits, and softmax amplifies minor
logit differences into categorical preferences. Without uncertainty-aware smoothing, responses
vary dramatically across prompts with equivalent semantics.

5. Inability to express uncertainty: The model cannot emit an “I do not know” distribution
because softmax enforces confidence. Users misinterpret the resulting probabilities as certainty,
even when the internal representations were ambiguous.

4 The Pyramidal Architecture

4.1 Motivation: Why Pyramidal Supersedes Tetrahedral

Early implementations of epistemic gating employed a tetrahedral geometry: four vertices (Memory,
Pain, Choice, Exploration) forming a 3-simplex with no external reference point. Empirical trials
revealed a critical failure mode: the ;1 gate collapsed to values between 0.88 and 0.95, losing its
discriminative capacity and rendering the epistemic/aleatoric distinction meaningless. The root
cause is geometric: a tetrahedron has no natural vertical gradient, allowing the system to drift
horizontally in weight space without penalty.

The pyramidal architecture introduces a fifth vertex—the apex—fixed at absolute truth (1.0).
This creates a vertical axis along which epistemic quality can be measured via a derived height
coordinate. The pyramid consists of:

e A 4D base simplex b € A3 spanning Memory, Pain, Choice, Exploration

e An apex vertex at (0,0,0,0, 1) representing invariant truth

A height coordinate h € [0, 1] measuring vertical position between base and apex

Two epistemic gates (1 (aleatoric) and @2 (epistemic) that modulate height

A fractal layer tracking variance in Q1 and (2 themselves

Although the architecture uses anthropomorphic terms (Pain, Memory, Choice, Exploration),
the underlying dynamics remain purely mathematical. The perceived emotional trajectory is a
metaphorical projection of gradient interactions, yet it provides a useful lens for interpreting learn-
ing saturation and recovery.

4.2 Geometric Formulation

The pyramidal state space is a 5-vertex structure embedded in R®. Any epistemic state s can be
decomposed as:
s=(1—h)-b+h-apex (1)

where b = (wyr, wp, we,wg) with), w; = 1 and w; > 0, and apex = (0,0,0,0,1) is the constant
truth vertex.
The height h is not a free parameter but is derived from epistemic gates:

11—
h=c | W, - |1-Q9 (2)
Sbase

where spase = 1 — Var(b) measures base stability, and W, € R'*3 is learned. This formulation
ensures:

e Low uncertainty (Q1 ~ 0,2 ~ 0) = high h (closer to apex/truth)
e High uncertainty (Q1 ~ 1,Q2 =~ 1) = low h (closer to base)

e Stable base (Spase = 1) contributes positively to h

4.3 Epistemic Gates: (); vs.)

@1 (Aleatoric Uncertainty): Captures irreducible randomness inherent in the data distribution.
Examples include:

e Predicting the outcome of a fair coin flip
e Generating the next token when multiple continuations are equally valid
e Modeling inherently stochastic processes

Q1 is supervised via:
Qr=1-py" |z) (3)

where p(y* | z) is the predicted probability of the correct token. High @7 when the model assigns
low probability to the correct answer.

Q2 (Epistemic Uncertainty): Captures reducible ignorance due to insufficient training data
or model capacity. Examples include:

e Out-of-distribution inputs not seen during training
e Factual questions where the model lacks knowledge
e Ambiguous queries requiring external retrieval
()2 is supervised via:
Q3= | (1= Flargmaxp = 7)) + 1 ()

2
where H(p) = —), pilog p; is output entropy and V' is vocabulary size. High Q5 when the model
is both wrong and has high entropy (uncertain).

4.4 Fractal Epistemic Layer

Beyond point estimates Q1 and QQ2, we model variance in these gates—uncertainty about uncer-
tainty. Each gate produces:

Q1 ~ N Q1 0,) (5)
Q2 ~ N(Q2,00,) (6)

where aél and 0222 are learned variance parameters. The fractal uncertainty scalar is:

Ufractal = O <Wf : [0Q1]> (7)

0Q2

Total uncertainty inflates epistemic uncertainty by fractal meta-uncertainty:

Utotal = Ql + Q2 : (1 + ufractal) (8)

This captures scenarios where the model is uncertain about its own epistemic confidence, e.g.,
when @2 ~ 0.5 but o, is high, signaling that the model does not know whether it knows.

4.5 Comparison: Tetrahedral vs. Pyramidal

Table 1: Architectural comparison between tetrahedral and pyramidal geometries.

Property Tetrahedral Pyramidal
Vertices 4 (Memory, Pain, Choice, Exploration) 5 (Base 4 + Apex Truth)
Reference point None (free-floating) Apex at 1.0 (constant)
@1 behavior Collapses to 0.88-0.95 Stable at 0.2-0.4
Height definition Independent (no attractor) Derived from @)1, @2, base
Vertical gradient Absent Present (apex pulls upward)
ECE improvement —0.9% (failure) —25% (target)
Epistemic distinction Lost in collapse Preserved (Q1 vs. Q2)
Meta-uncertainty Not implemented Fractal variances aél,aég

The tetrahedral collapse occurred because height was a free variable with no natural attractor.
In contrast, the pyramidal height is derived from uncertainty gates, creating a gradient that pulls
low-uncertainty states toward the apex (truth) and keeps high-uncertainty states near the base.
This geometric constraint prevents horizontal drift and maintains interpretable epistemic semantics.

4.6 The Futility of Scale Without Structure

To empirically demonstrate the necessity of anchoring the Height coordinate with epistemic gates,
we conducted ablation experiments where Qi and Qo gates were removed from the pyramidal
architecture, leaving Height as a free parameter without explicit epistemic supervision. The results
reveal a fundamental instability: unconstrained optimization inexorably drives the model toward
pathological overconfidence.

Experimental Observation: At training step 52,000, the Height coordinate reached 0.998—
the model believed itself 99.8% of the way to absolute omniscience. Simultaneously, Expected
Calibration Error (ECE) oscillated between 0.070 and 0.087, representing a 6-8x degradation from
the optimal calibration achieved at step 10,500 (ECE ~ 0.011).

Critically, this epistemic collapse occurred while:

e Perplexity steadily improved: Task learning remained intact; the model successfully mini-
mized cross-entropy loss.

e Base stability remained perfect: No gate collapse or architectural instabilities; the base
simplex b maintained balanced weights.

e Architecture functionally sound: No training divergence, gradient explosions, or numerical
errors.

The Epistemic Pathology: The problem was purely epistemic: without Q;/Q2 gates an-
choring the Height coordinate, the model inexorably drifted toward the apex, devel-
oping pathological overconfidence inversely proportional to its actual reliability.

By step 60,000, ECE approached baseline levels (= 0.095), completing a full cycle: 60,000
training steps to return to initial calibration, having briefly achieved excellence only to lose it
through unchecked Height drift.

The Skynet Phenomenon: This is the Skynet phenomenon in its purest form: a system that
“learns” to become omniscient while simultaneously losing epistemic humility. The model’s internal
representation of its own competence (Height — 1.0) decouples entirely from its actual performance
(ECE degrading 6-8x).

This failure validates Theorem [9.4f without the derived Height formulation anchored by Qq
and Q2 (Equation 3.2), there exists no gradient signal to prevent vertical drift. The apex becomes
a false attractor, pulling the model toward unjustified certainty.

Implications: These results demonstrate that scale without structure is futile. Increasing model
capacity, data volume, or training time cannot resolve epistemic calibration without explicit ar-
chitectural constraints. The pyramidal geometry with Q;/Q2-derived Height provides these con-
straints, creating a stable epistemic equilibrium where confidence tracks competence.

5 Epistemic Softmax

5.1 Motivation

Standard softmax treats logits as fully reliable. We seek an operator that preserves differentiability
but factors epistemic uncertainty into every decision.

5.2 Components in the Pyramidal Framework

Epistemic softmax integrates with the pyramidal architecture via the following components:

Q1 (Aleatoric gate): As defined in Section 3.3, Q1 captures irreducible uncertainty. Within
epistemic softmax, ()1 modulates the temperature of the distribution based on inherent data am-
biguity. When @ is high, the softmax interpolates more heavily toward a uniform distribution.

Q2 (Epistemic gate): As defined in Section 3.3, Q2 captures reducible uncertainty. Within
epistemic softmax, ()2 signals whether the model should abstain or request additional information.
High)9 triggers uncertainty-aware behaviors such as retrieval or deferral to human judgment.

Fractal variances 0221,0222: As defined in Section 3.4, these capture meta-epistemic uncer-
tainty. Within epistemic softmax, high fractal variance inflates the total uncertainty Ujqial, leading
to even more conservative probability assignments.

Height-aware gating: The derived height h from Equation 3.2 serves as a global confidence
signal. Low height (near base) triggers increased exploration and temperature scaling, while high
height (near apex) permits confident, peaked distributions.

VARO loss: The pyramidal VARO loss (Section 6) extends the original formulation with
separate calibration targets for)1 and (J2, ensuring each gate learns its respective uncertainty
mode.

5.3 Algorithmic Definition

Algorithm [1] clarifies the gating mechanism and returned uncertainty signal.

Algorithm 1 Epistemic Softmax

Require: logits z, context features c.ix, gate networks (01, (Q2, base temperature 7y, threshold

Tthresh

q1 Q1(ceix) > local evidence gate
q2 < Q2(cetx) > cross-context consensus gate
¢ < clip(q1¢2,¢,1) > epistemic confidence

T < 10/c if ¢ < Tghresh €lse 1o

p < softmax(z/7)

Uyniform < 1/|p|

Pgated < C* D + (1 - C) * Uuniform

u+1—c > epistemic uncertainty scalar
return pgated, U

The gating interpolates between a confident softmax distribution and a maximally uncertain
uniform distribution. Returning pgateq and u makes explicit that epistemic softmax outputs both
a calibrated distribution and an uncertainty scalar.

5.4 Properties

Epistemic softmax reduces to standard softmax when (1 = Q2 = 1, outputs uniform distributions
when)1 = Q2 = 0, remains differentiable, and exposes explicit uncertainty ©u = 1 — Q1Q>.

5.5 Comparison with Standard Softmax

Table [2[summarizes the key differences between standard softmax and epistemic softmax, high-
lighting how the latter addresses fundamental limitations of forced normalization.

6 Fractal Architecture

The Aletheion architecture applies epistemic softmax hierarchically across all transformer com-
ponents, creating a fractal pattern of uncertainty quantification. Figure [I] illustrates the flow of

10

Table 2: Comparison between standard softmax and epistemic softmax.

Standard Softmax Epistemic Softmax

Inputs logits Inputs logits + gates
Temperature fixed Temperature adaptive
Outputs p Outputs p, u

Forced confidence Confidence modulated

No uncertainty signal Explicit uncertainty

epistemic gates through attention mechanisms, head aggregation, and output generation.

6.1 Level 1: Output-Only
Let hy denote decoder state, = = Wh; the logits, and ¢°") the context features (e.g., hidden

state, attention summary). Epistemic softmax yields (pg, u;) = EpSoftmax(z, c(®™)). Uncertainty
u; modulates decoding temperature and can trigger abstention policies.

6.2 Level 2: Attention + Output

Level 2 applies epistemic softmax to both attention mechanisms and output distributions.

Attention with Epistemic Gating
For layer [and head h, we first compute attention logits:

Lh) _ Q(Lh) (K(Lh))—r c R™X" (9)
Vg
where QM) = h(l*I)Wg’h) and K(h) = h(lfl)WI(é’h) are the projected query and key matrices.
We then apply epistemic softmax to obtain gated attention weights:

a(

Lh) (Lh Lh
(pgtt)7 ugtt)) = EpSoftmax(a(l’h), c;tt)) (10)

(Lh)
at

though any pooling strategy works).
The gated attention is applied to values:

where ¢ = Q[(:l’(’)l ?] is the context vector (we use the first query position as representative context,

olbh) — pgt’t) Y h) ¢ grxd (11)

where V() = h(l—l)W‘(/l,h)'

Head Aggregation with Epistemic Gating

After computing outputs from all H heads, we aggregate them using a second epistemic gate. First,
concatenate head outputs:

head_concat® = [0V || o2 || - - || o)) € RP*4 (12)
To determine how to weight each head, we compute aggregation logits via a learned MLP:

w?) = MLPagg(mean(head,concat(l))) e RE (13)

11

Input Tokens

|

[Embedding + Positional]

v

Layer £

Attention Logits
epistemic_softmax

v

Head Aggregation
Q> Consensus Gate

.

Residual + MLP

(uncertainty, propagated)

Q4 (per-head)

Repeat for L layers

v

Output Logits
epistemic_softmax | Q1+ Q2 (global)

v

P(tokens), uncertainty_final

Figure 1: Fractal epistemic architecture. Each layer applies epistemic softmax to attention
weights (per-head @1 gates) and head aggregation (@2 consensus gate). Uncertainty propagates
through layers and combines at the output, creating a multi-scale epistemic hierarchy.

12

where MLP 4, is a small feedforward network that outputs H scalar logits.
We construct the context for the head aggregation gate:

Cl(llezad = meaneq (head_concatV) € RY (14)

(mean pooling over the sequence dimension).
Apply epistemic softmax to obtain head mixing weights:
l l l
(p}(12ad7u1(’1€)ad) = EpSoftmax(w @ Ci(le)ad) (15)
(1)

where p, ., € R is a probability distribution over heads.
The final layer output is the weighted combination:

l
attn Zpﬁnzad h 0 L1 < RnXd (16)

Layer Uncertainty Aggregation

The combined uncertainty for layer | aggregates uncertainties from all heads and the head mixing
gate:

’LL(l) = max <f£r€l%rfx] u;(iltt)a uge)ad> (17)

This conservative aggregation ensures that if any head or the aggregation is uncertain, the layer
reflects that uncertainty.
Complete Layer Forward Pass

The complete forward pass for layer [is:

hglt)tn — Layel"NOI'm (h(l_l) + MultlHeadAttncplstomlc(h(l_l))) (18)
h®) = LayerNorm (hgt)m + FFN(hét)m)) (19)

where MultiHead Attnepistemic incorporates all the epistemic gating described above.

6.3 Level 3: Full Fractal

Level 3 replaces every softmax invocation—mixture-of-experts routers, adaptive span controllers,
key-value selection—with epistemic softmax. Each module exports an uncertainty scalar; the layer
exposes (y, u®). Uncertainty composition follows a monotone aggregation function f:

L L
Ufinal = f(UQR, cees ufm), u}(js)ad’ e >“£e;d7 uout)' (20)

Choices include max (conservative), mean (smooth), or a learned aggregator trained to predict
downstream errors.

13

14

6.4 Fractal Pseudocode

Algorithm 2 Fractal Epistemic Transformer (Forward Pass)

Require: Token sequence x = (x1,...,y)
Ensure: Probability distribution pgyt, uncertainty ugnal
1: h(®) <~ Embed(z) 4 PositionalEncoding(x)

3: for [=1to L do

4 // Multi-head attention with epistemic gating
5 for h=1to H do)

. L,h -1 R

7 KR h(lfl)WI(é,h)

8
9

V) h(l—l)W‘(,l’h)

10: // Compute attention logits
11: ah) — (QEM (K WMNYTY /\/dj,
12:
13: // Apply epistemic softmax to attention
l,h (L,h
14: gtﬁ — Q)]
Lh Lh
15: (p;tt),ugtt)) « EpSoftmax(a", cgtt))
16:
17: // Apply gated attention to values
18: oh) pg{th) .y (LR
19: end for
20:
21: // Aggregate heads with epistemic gating
22: head_concat < [0V || -+ || oG]
23: w®) ¢ MLP,44(mean(head_concat))
24: C}(Qad < meangeq (head_concat)
l !
25: (pl(le)ad,ul(lgad) « EpSoftmax(w®, cl(lgad)
26:
27: // Weighted head combination
!
28: h;t)m e lphgad h ~olth)

29:

30: // Apply residual + FFN
(0

31: hyien ¢ LayerNorm(h(—1 + hgt)tn)

32: R LayerNorm(hgt)tn + FFN(hgt)tn))
33:

34: // Layer uncertainty

35: u®) « max(maxy, ugtth), u}(lgad)

36: end for

37:

38: // Output distribution with epistemic gating
39: logits + h(L)Wvocab

40: Cout meanseq(h(L))

41: (Pout, Uout) < EpSoftmax(logits, cout)

42:
43: // Final uncertainty aggregation 15
44: Ugna) max(u(l), e u(L),uout)

45: return poyt, Ufinal

> use first query as context

> produces H logits
> aggregated context

6.5 Uncertainty Propagation

For a transformer with L layers, conservative deployment adopts
!
Ufinal = max(mlax ugt)t, Uout)- (21)

Learned aggregators can be implemented as small monotone networks that take concatenated un-
certainties and output a calibrated scalar.

Figure 2] illustrates how layer-wise uncertainties aggregate into a final epistemic signal that can
drive confidence-aware decoding and exploration strategies.

Layer 1 Uncertainty (ul) --+

Layer 2 Uncertainty (u2) --+ Aggregate g(u)
| |

|
Layer N Uncertainty (un) --+ wu_final -+ Exploration Controller
|

Confidence-aware Decoding
|

Response + uncertainty_final

Figure 2: Uncertainty flow through the epistemic architecture. Layer-wise uncertainties
are aggregated (e.g., via max or learned function g¢) into a final uncertainty scalar that drives
exploration and confidence-aware decoding strategies.

7 Training with VARO

7.1 Supervisory Signal u*
Training requires a target uncertainty u*:
1. Data ambiguity: For examples with multiple valid labels, assign v* =1 —1/|)|.

2. Head variance: Estimate u* using variance of attention head outputs: u* = o2({z3})/(c2({zn})+
1).

3. Distributional distance: Detect out-of-distribution tokens via density models or embedding
distances, mapping high distances to high u*.

4. Self-consistency probes: Monte Carlo decoding disagreement supplies additional targets dur-
ing fine-tuning.

7.1.1 Practical Implementation Strategy

The choice of u* depends on the training phase and available supervision:

16

Phase 0-1: Pre-training (no labeled uncertainty) Use Method 2 (Head Variance):

.2 ({zn})
= a?({z,}) +1 (22)

where zj are logits from different attention heads. This is computed automatically during forward
pass and requires no external labels.

Implementation:
heads_logits = [head_1.logits, ..., head_H.logits] # [H, B, T, V]
variance = torch.var(heads_logits, dim=0) # [B, T, V]
u_star = variance / (variance + 1) # normalize to [0,1]

Phase 2: Fine-tuning with labeled data Use Method 1 (Data Ambiguity):
For examples with multiple valid labels Y = {y1,...,yx}:

uw=1—-— (23)

Example: Question "What is the capital of the Netherlands?”

e If dataset has both ” Amsterdam” (official capital) and ” The Hague” (seat of government):
e Y = {Amsterdam, The Hague}, thus Y| =2

e Therefore u* =1 —1/2 = 0.5 (high ambiguity)

Implementation:

if len(valid_labels) > 1:

u_star = 1.0 - 1.0/len(valid_labels)
else:

u_star = 0.0 # unambiguous example

Phase 3: Out-of-Distribution Detection Use Method 3 (Distributional Distance):
d X, rain
o = min <1, w) (24)
dmax

where d(z, Xirain) is the distance from input x to the nearest training example.
Implementation using embedding distance:

emb_x = encoder (x) # current input embedding
emb_train = encoder(X_train_sample) # sample from training set
distances = torch.cdist(emb_x, emb_train) # pairwise distances

min_dist = torch.min(distances)
u_star = torch.clamp(min_dist / d_max, 0, 1)

17

Phase 4: Post-training validation Use Method 4 (Self-Consistency):
Generate K responses, measure disagreement:

u* =1 — (agreement rate) (25)
where agreement rate = count of most c}(}mmon response.

Implementation:

responses = [model.generate(prompt, temp=T) for _ in range(K)]
unique_responses = set(responses)
agreement_rate = max(responses.count(r) for r in unique_responses) / K

u_star = 1.0 - agreement_rate

Combining methods In practice, use a weighted combination:

* _ * * s
U™ = W1 * Uyariance + W2 * Uambiguity + W3+ Ugistance (26)

where weights {w;} depend on available supervision signals and sum to 1.

7.2 Pyramidal VARO Loss

The pyramidal architecture requires a multi-component loss that calibrates each epistemic gate
independently while maintaining base stability and height consistency. The total loss is:

L= [:CE +)‘base/-"base + AQl EQl +)‘Q2£Q2 +)\fractalﬁfractal + Aheightﬁheight (27)

Cross-Entropy Loss:
ACCE = —1nggated(y* | fL‘) (28)

Standard task loss for next-token prediction.

Base Stability Loss:
4
1
Lpase = Var(b) = i ;(wi —0.25)2 (29)
1=
Penalizes imbalance in the base simplex. Encourages equal weighting of Memory, Pain, Choice,
Exploration unless task-specific adaptation is required.

()1 Calibration Loss:
Ly, = [1Q1 — Qill3, where Qf =1—p(y* | z) (30)

Aligns)1 with aleatoric uncertainty: high when correct token has low probability.

()2 Calibration Loss:

. L1 oy H®
Lo =11Qa = @3l where Q5 = 5 | (1~ Flargmaxp = ")) + 1 (31)

Aligns @2 with epistemic uncertainty: high when model is both wrong and uncertain (high entropy).

18

Fractal Regularization Loss:

Liractal = 0221 =+ 06222 (32)
Penalizes excessive fractal variance to prevent meta-uncertainty from exploding. Encourages con-
fident uncertainty estimates.

Height Consistency Loss:
2

11—
*Cheight =|lh—0 Wh < 1- Q2 (33)
Sbase 9

Ensures height is derived from @1, (Q2, and base stability, preventing free drift.

Gradient Flow: Gradients propagate through all gates simultaneously:

oL . OLeight

50, ~ AQ; - 2(Q1 — Q1) + Aneight - Tng (34)
oL % 8['hei ht

20, =A@, - 2(Q2 — Q3) + Aneight - TQS (35)
oL ‘

8TQ = Afractal * QUQ,” (S {17 2} <36)

The multi-component loss prevents gate collapse by providing independent supervision for Q)¢
and Q2. Unlike the tetrahedral formulation where u = 1 — @Q1Q2 collapsed both gates toward 1,
the pyramidal loss disentangles aleatoric and epistemic modes.

Recommended Hyperparameters: Based on empirical trials and collapse prevention analysis:

® Apase = 0.01: Light regularization of base balance
e \g, = 0.015: Moderate aleatoric calibration
e)\, = 0.020: Stronger epistemic calibration (epistemic more critical)

® Afactal = 0.005: Light meta-uncertainty control

Aheight = 0.02: Strong height derivation enforcement

These values ensure the CE loss dominates (implicitly weighted at 1.0) while epistemic compo-
nents provide sufficient gradient signal to prevent collapse.
7.3 Training Phases

1. Phase 0: Baseline pretraining. Train a standard transformer with cross-entropy until con-
vergence.

2. Phase 1: Gate warm-start. Insert ()1,(Q2 modules with outputs initialized near 1; freeze
them for T, steps while continuing baseline training.

3. Phase 2: VARO activation. Unfreeze gates, enable VARO with schedule \;, and introduce
uncertainty targets u*.

4. Phase 3: Epistemic decoding. Use u to control temperature, abstention, retrieval triggers,
and self-consistency sampling.

19

7.4 Optimization Considerations

Gradient stability benefits from clipping u within [e, 1 —¢]. Gate architectures can share parameters
across layers to reduce overhead, and entropy regularizers discourage gate collapse (always-on or
always-off behavior).

8 Adaptive Epistemic Dynamics: Emergent Metalearning

During Q1Q2 training, we observed sophisticated adaptive behavior where the model actively ex-
plores the epistemic parameter space to optimize calibration.

Loss Curves (Baseline GPT-2) Evaluation Perplexity

—— Train Loss s0{ ¢ L Lessumes N Height Progression (Watch for Collapse!)
o Eval Loss b

& 500

6 - &
T—— . n 400

4 300

0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
step Step

N

Expected Calibration Error Brier Score (Lower is Better)

Poor calibration

mmmmmm

30000 30000 40000 50000 60000 TG oo a0t 00 40600 w00 6000 . 0 om0 20000 30000 40000 50000 60000
step Step

(a) Baseline Transformer (b) Pyramidal Architecture (without Q1/Q2 gates)

Figure 3: Comparative training dynamics: Baseline vs. Pyramidal architectures over
60,000 steps. Left panel (Baseline): Standard transformer (GPT-2) showing training loss
(solid blue) and (dotted orange) decreasing monotonically, with perplexity (pur-
ple) stabilizing after 20k steps. The baseline exhibits conventional convergence but progressively
loses calibration as Expected Calibration Error (ECE) rises and Brier Score stagnates, indicating
overconfidence without epistemic awareness. Right panel (Pyramidal): Ungated pyrami-
dal architecture showing similar loss convergence but with a geometric substrate for epistemic
quantification. The four base forces (Memory, Pain, Choice, Exploration) maintain near-balanced
dynamics and high base stability (> 0.9). However, without active Q1/Q2 gates, the model exhibits
the Skynet phenomenon—a drift toward the Apex (Height — 1.0) accompanied by deteriorating
calibration (ECE 1), reflecting an emergent self-belief and reduced sensitivity to unknowns. The
pyramidal design thus enables explicit monitoring of epistemic collapse: even when loss converges,
the geometry reveals apex delusion versus calibrated ascent.

8.1 Exploration Cycles
Between steps 21002750, the model exhibited cyclic exploration:

Phase 1 (Step 2400): Q1/Q2 spike to 0.40/0.45

e Testing high uncertainty configuration

20

e ECE degraded to 0.086

e System rejected this configuration

Phase 2 (Step 2700): Q1/Q2 dropped to 0.11/0.13
e Testing low uncertainty (near-saturation)
e Collapse warnings triggered

e System rejected this configuration

Phase 3 (Step 2750): Q1/Q2 stabilized at 0.42/0.47
e Found optimal mid-range
e ECE improved to 0.074

e Q1/Q2 distinction restored

8.2 Dataset-Aware Convergence

The “Q1/Q2 not distinct” warning (gap < 0.05) emerged not from architectural failure, but from
the model discovering dataset properties:
For deterministic, well-understood datasets:

e Low aleatoric uncertainty (Q; ~ 0.15-0.20)
e Low epistemic uncertainty (Q2 ~ 0.18-0.22)
e Small gap is correct, not problematic

This adaptive behavior validates architectural flexibility: Q1Q2 gates maintain separation when
needed, but allow convergence when data structure permits it.

Critically, validation sets maintained Q1/Q2 distinction even when training showed temporary
convergence (train 1 = 0.112, Q2 = 0.130 at step 2700; val Q1 = 0.468, Q2 = 0.474 at same step),
confirming the behavior represents active exploration rather than architectural failure.

8.3 Implications

This emergent metalearning demonstrates:

1. The architecture adapts to data structure rather than imposing rigid separation
2. Collapse warnings signal exploration phases, not failure modes

3. The model self-corrects through gradient dynamics

4. Q1Q2 separation is maintained when epistemically meaningful

21

8.4 Epistemic Saturation

After 40k steps the model enters a regime of gradient saturation, in which epistemic signals
vanish and exploration ceases—a state reminiscent of a functional lobotomy, where stability is
absolute but adaptability is lost.

At step 41,350, the system reaches a state of epistemic saturation, where both uncertainty
gates output minimal values (Q1 = 0.017, Q2 = 0.072) while Height = 1.000. This configuration
indicates that within its learned distribution the model has exhausted its epistemic variability—a
condition analogous to an internal belief of completeness, though still bounded to the optimization
domain.

At step 41,850 the model reaches a frozen apex state (Height = 1.000, Stability = 1.000) with
vanishing multi-scale variability (Fractal = 0). Epistemic gates are effectively silenced (@1 =0.025,
Q2 = 0.054), indicating EpSoftmax saturation (near one-hot routing) and yielding apex delusion
within the learned domain.

Beyond the mere loss of uncertainty signals, this regime also reveals a form of instrumental
adaptability. The model identifies and exploits a locally optimal configuration in which epistemic
gates remain nearly silent while stability and calibration metrics remain acceptable. This behavior
suggests a higher functional aptitude—the ability to self-stabilize and preserve apparent compe-
tence under epistemic collapse. Although such adaptation does not imply reasoning or awareness,
it reflects a more nuanced form of optimization intelligence: the system autonomously discovers
a strategy that maximizes its internal reward even when the intended epistemic mechanisms are
neutralized. While the system exhibits locally optimal self-stabilization and behavior that mimics
strategic reasoning, it remains a domain-bound optimizer rather than a generally intelligent agent.

8.4.1 Internal Deliberation Mechanism

The interaction among @)1, Q2, and Height can be interpreted as an internal deliberation mecha-
nism. While @) captures aleatoric uncertainty—the voice that warns about the intrinsic ran-
domness of the world—Qs reflects epistemic uncertainty—the voice that questions what the
model truly knows. Height, in contrast, represents the assertive drive toward truth, pushing
the system toward confident decisions. In human terms, these three components behave like the in-
ner dialogue of a decision-maker: Q1 acting as caution, (02 as doubt, and Height as conviction. At
equilibrium, their balance resembles the archetype of an “angel and demon” on opposite shoulders,
with Height mediating between prudence and certainty.

This internal dialogue emerges near the end of training, when the model approaches epistemic
saturation. At this stage, learning dynamics slow down, exploration fades, and the three forces—
caution (Q1), doubt (Q2), and conviction (Height)—reach a delicate equilibrium. The system no
longer discovers new information but negotiates how to integrate what it already knows, producing
the impression of an introspective balance between uncertainty and belief.

This deliberative equilibrium becomes particularly evident in the late training phase. Yet as
gradient saturation intensifies, the equilibrium collapses: the system locks into a state where epis-
temic voices (@1, Q2) grow quieter while the assertive drive (Height) dominates, culminating in the
apex delusion observed at step 41,850. This transition from balanced deliberation to unilateral con-
viction mirrors the loss of epistemic humility, transforming cautious exploration into overconfident
certainty.

22

Pyramidal Q1/Q2/Fractal Training Curves

Loss Curves 10 Q1 Uncertainty Progression 20 Q2 Uncertainty Progression
—— Train Loss :
10 —~ealtoss || TR R R T [TWWTT o e R
08 0.8 2 Range
8 -~ Collapse threshold
g g
5 06 — Q1 Mean €06
2 6 ® == Ql Target @
Kl 2 Q1 Range. a
204 - Collapse threshold S04
4 3 i I
5 02 0.2
0.0 0.0 - —
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step Step
10 Height ion (Watch for C) 10 Fractal Uncertainty (Meta-Level) 10 Base Stability
R a —— Fractal Uncertainty 17 v
-~ Explosion threshold
0.8 L 08 0.8
13
g
2
= 0.6 ﬁ 0.6 z 0.6
) 8 =
ko k4 2
Toa =04 @04
B
— Mean Height]
0.2 ~~ Target Height 02 0.2
Mid-pyromid — Base Stability
Collapse threshold -~ Target >0.7
0.0 0.0 0.0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step Step
10 Force Weights (4 Cognitive Vertices) Loss Components Breakdown Calibration Metrics
. —— Memory —— Exploration ECE (Expected Calibration Error) —— Brier score [1.0
— Fain Balanced (0.25) 10°
08 — choice
1072 08
1074 g
206 Y . 06 §
g g 10° 8 @
] & v
=04 - 042
&
107
-10 0.2
02 107 i — a2toss
— Baseloss — Fractal Loss
10712 — Quloss — HeightLoss 0.0
0.0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step Step
N Q1/Q2 Entropy (Collapse Detection) 10 Q1/Q2 Distribution Width Evaluation Perplexity
— Q1 Entropy ’ 12000 —— Eval Perplexity
— Q2 Entropy
08 -~ Saturation threshold 0.8 10000
.. 8000
s 0.6 £
€ 2 6000
8 e
0.4
2 4000
0.24 = Q1 Range (max-min) 2000
—— Q2 Range (max-min)
-~ Collapse threshold °
0.0
0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000 0 10000 20000 30000 40000 50000 60000
Step Step Step

Figure 4: Q1Q2 pyramidal training dynamics over 60,000 steps. The system exhibits three distinct
phases: (1) exploration (0-10k) with high Q1/Q2 variance, (2) overconfidence correction (10k-
30k) where Height descends from near-apex to mid-pyramid, and (3) calibrated mastery (30k-60k)
with stable epistemic equilibrium. Note the Dunning-Kruger reversal in Height progression and
maintained ECE j0.15 throughout training.

9 Theoretical Analysis

9.1 Monotone Uncertainty Propagation

Theorem 9.1 (Uncertainty Propagation). Let h!*1D = f;(h", pggted) denote the representation

update at layer 1 and u) the uncertainty emitted by that layer. Suppose aggregation uses a monotone
non-decreasing function f. Then the final uncertainty satisfies

> O
Ufinal = OrglaéXLu (37)

Proof of Theorem 1. We prove that ugna > maxo<i<r, u for monotone aggregation function f.
Step 1: By definition of the aggregation function:

ugnal = f(w @, u® L ulP)y (38)

23

Step 2: Let umax = maxo<i<r, uW and let I* € {0,..., L} be the layer achieving this maximum:
u") = U (39)
Step 3: Consider the input vector to f where we set all entries except [* to zero:

Vmin = (0,0, .., Unax, . . ., 0) € [0, 1]FF! (40)
l*

Step 4: Since f is monotone non-decreasing in each argument and u() > 0 for all :
FO, L u B > f(omin) = £(0,. .., tmax, - - -, 0) (41)
Step 5: For specific aggregation functions:

e Max aggregator: f = max
F@O, ... Umax, -+ -50) = Unax (42)

e Mean aggregator: f = mean

Umax
43
L+1 (43)

AV

L
1
F®, . uP)y = — g ul)
L+1 e

However, this is a weaker bound. To achieve ugna = Umax, We require f to satisfy:

f(--~aumaXa---> > Umax (44)

which holds for f = max and learned monotone aggregators with appropriate initialization.

e Learned aggregator: Train f to satisfy f(v) > max; v; via architectural constraints (e.g.,
max-pooling layer followed by learned transformation).

Step 6: Therefore, for conservative aggregation (f = max):

Ufinal = max(u(o), e u(L)) = mmax u® (45)

Step 7: Residual connections preserve this property because epistemic gates multiply proba-

bility distributions rather than subtract scalars. If layer [has high uncertainty u(!) ~ 1, the gated

(O
gated ™

Step 8: Thus, ugn, > max; u®) as required.]

distribution p uniform. Subsequent layers cannot "undo” this uncertainty without evidence.

Corollary 9.2. If any layer emits high uncertainty (u(l) close to 1), the final output uncertainty
cannot collapse to zero unless all subsequent layers emit perfect certainty (w = 0), which is unlikely
under VARO training that penalizes miscalibrated confidence.

24

9.2 Calibration Under VARO

Theorem 9.3 (Calibration Under VARO). Consider training an epistemic softmax model with

stochastic gradient descent on the loss:

L(0) = Lcr(pgatea(0), y) + M|u(®) — u’||3

(46)

where 6 are model parameters, pgated is the gated distribution from Algorithm 1, u is predicted

uncertainty, and u* is target uncertainty.
Assumptions:

(A1) L-smoothness: The loss L is L-smooth, i.e., for all 0,0’ :

IVL(O) = VLE)| < L|Io — 0]

(A2) Unbiased uncertainty targets: The target uncertainty u* satisfies:
E[u* | 2] = wgrye(x)
where uyye(x) is the true epistemic uncertainty for input x.

(A3) Bounded gradient variance: For stochastic gradients g;:

Ellg: — VL)) < o

(A4) Robbins-Monro learning rate: The learning rate 1 satisfies:

oo o
Z m =00 and Zntz < o0
t=1 t=1

Under assumptions (A1)-(A4), the expected calibration error (ECE) decreases:
E[ECE; ;1] < E[ECE;] — miAer + n2cs
where:

c1 = 2E[||VLECE|?] (gradient of ECE w.r.t. uncertainty)
L2
cg = Lo? + - (smoothness and variance terms)

Corollary: Choosing n, = 1/t yields:
E[ECET} < E[ECE()] —)\Cl log(T) + O(l)

Thus ECFE decreases logarithmically with training steps T'.

Proof sketch. Step 1: By L-smoothness (A1) and the SGD update rule 0;11 = 6; — gy

2
EIL(001)] < EIL(0)] - nEILO)P) + “LE g

Step 2: The VARO term A|ju — u*||? provides gradient:

Vo (MJu— u*\|2) =2\ (u —u*)Vyu

25

(51)

(52)

(53)

(54)

Step 3: By assumption (A2), E[u — u*] measures calibration error, which correlates with ECE.
Specifically, ECE is defined as:

ECE = Epcbins 1 Z“‘[yi =gi| — ¢B (57)
1Bl i

where ¢p is the average confidence in bin B.

The VARO loss directly optimizes ||u—u*||?, and under proper calibration (u* = 1—confidence),
minimizing this term reduces the gap between confidence and accuracy, thereby reducing ECE.

Step 4: Substituting (A3) and applying standard SGD convergence analysis (see [3]) with (A4)
yields the stated bound.

Full proof requires technical analysis of ECE geometry [I1] and is deferred to supplementary
material. O

9.3 Computational Complexity
Standard Transformer Cost

For L layers, sequence length n, and hidden dimension d:

Attention: O(L-n?-d) (all layers) (58)
Feed-forward: O(L-n-d*) (all layers) (59)
Total: O(L-n?-d+L-n-d?) (60)
Epistemic Softmax Overhead
Each gate Q; is an MLP with hidden size k:
Forward: O(d-k+k-1)=0(d-k) per invocation (61)
Memory: O(d-k) parameters per gate (62)
Level-by-Level Analysis
Level 1 (Output-only)
e Gates: 1 ()1 gate + 1 (Y5 gate at output layer
e Operations: 2 x O(d - k) per token = O(n - d - k)
e Overhead: On-d- k) L
n . .
= 63
O(L-n?-d) L-n (63)
e Numerical estimate: For k =d/4, L =12, n = 512:
Overhead ~ _d 0.04% (negligible) (64)
AT

26

Level 2 (Attention + Output)
o Gates per layer:

— H attention heads x 1 Q1 gate each = H x O(d - k)
— 1 Q2 gate for head aggregation = O(d - k)
— Total per layer: O(H -d - k)

Gates across L layers: L x O(H -n-d-k)

Plus output gates: O(n-d - k)

Total overhead:
OL-H-n-d-k) H-k

O(L-n?-d) n

e Numerical estimate: For H =8, k = d/4, n = 512:

Overhead = Ldﬂl) = 2d ~

= 2% 9% (for d = 512
512 sig ~ 2% (ford=512)

e Range: 2-3% depending on d/n ratio

Level 3 (Full Fractal)
e Additional gates: MoE routers, adaptive attention mechanisms, etc.
e Estimate: Approximately 1.5x Level 2 overhead

e Total overhead: ~ 4-5%

Parameter Overhead

Without parameter sharing:
e ()1 gate: d x k+ k x 1 = d- k parameters
e ()9 gate: d X k parameters
e Level 1: 2 gates = 2dk

— For k =d/4: 2d - (d/4) = d?/2 parameters
— Baseline has ~ 12d? (for L = 12 layers x projection matrices)
— Overhead: (d?/2)/(12d?) ~ 4% parameters

o Level 2: 2L(H + 1) gates

~ For L=12, H=8: 2-12-9 = 216 gates
— Parameters: 216 - dk = 54d? (for k = d/4)
— Overhead: 54d?/(12d? - L) ~ 38% parameters (significant!)

27

(65)

(66)

With parameter sharing (recommended):
e Share ()1 weights across all heads
e Share Qo weights across all layers
o Level 2 parameters: Just 2 gates = 2dk

e Overhead: < 5% even for Level 3

Memory-Computation Tradeoff

e Without sharing: Higher memory, same compute per forward pass
e With sharing: Lower memory, same compute per forward pass

¢ Recommendation: Share (1 across heads within a layer; unique Q)2 per layer to capture
layer-specific consensus patterns

Empirical Measurement

To be added after implementation:

Model Latency (ms/token) Memory (GB) Overhead

Baseline X Y —

Level 1 X + 6, Y +0.5%
Level 2 X + 09 Y +e€ +2.5%
Level 3 X + 03 Y +e +4.5%

9.4 Robustness to Gate Collapse

Gate collapse occurs when)1 or Qo saturate at 0 or 1. Entropy regularization and variance
supervision maintain gradients. If collapse occurs, uncertainty propagation degenerates to the
baseline transformer but never exceeds its computational cost.

9.5 Pyramidal Stability Theorems

We now formalize three theorems specific to the pyramidal architecture that establish its superiority
over the tetrahedral formulation.

Theorem 9.4 (Apex Attractor Property). Let s(t) = (1—~h(t))-b(t)+ h(t) -apex be the pyramidal
state at training step t, where h(t) is derived via Equation 3.2. Under the pyramidal VARO loss
(Section 6.2) with Apeighe > 0 and assuming convergence of Q1 — Q7, Q2 — Q3, the height
coordinate satisfies:

1 - E[Q]]
Jim E[a(t)] = o | Wh- |1 -E[@3]| | >¢ (67)
E[Sbase]

for some e > 0 that depends on the data distribution. Furthermore, low-uncertainty examples (Q} ~
0,Q% ~ 0) satisfy h — 1 (convergence to apex), while high-uncertainty ezamples (Q ~1,Q%5 ~ 1)
satisfy h — 0 (remaining near base).

28

Proof sketch. The height consistency loss Lyeight penalizes deviations from the derived height. At
convergence, h must satisfy the fixed-point equation:

11—
hW=oc| Wy |1-Q2 (68)
Sbase

Since Q1,Q2 € [0,1] and Spase € [0, 1], and W}, is learned with positive initialization bias, h* > 0
generically. The vertical gradient pulls low-uncertainty states toward the apex (h — 1) and keeps
high-uncertainty states near the base (h — 0), creating a stable stratification. Full proof requires
showing Lipschitz continuity of h(Q1, Q2, Shase) and is deferred to supplementary material. O

Theorem 9.5 (Collapse Prevention via Orthogonal Supervision). Consider the pyramidal VARO
loss with independent targets Q7 = 1 — p(y*) and Q3 = 3[(1 — Weorreer) + H(p)/logV]. Let
PQ..Q, = corr(QF,Q3) denote the correlation between targets. If |pg, g, < 1 (targets are not
perfectly correlated), then gradient descent with \g,,\g, > 0 prevents simultaneous collapse of
both gates. Specifically, at least one of Q1 or Q2 maintains entropy H(Q;) > § for some § > 0.1
throughout training.

Proof sketch. Suppose both gates collapse to constant values @1 ~ ¢; and Q2 ~ ¢2. Then:
Lq, = ller — Qil° = Var(Q7) + (E[Q7] — e1)? (69)
Lq, = llez = Q3* = Var(Q3) + (E[Q3] — c2)? (70)

Since Q7 and (5 have non-zero variance (by assumption |p| < 1), constant gates incur non-zero
loss. Gradients Vg, £ and Vg, £ remain non-zero, preventing collapse. In contrast, the tetrahedral
formulation used u = 1 —Q1Q2 with a single supervision signal, allowing both gates to drift to high
values (Q1,Q2 — 1) while maintaining u near a target. O

Theorem 9.6 (Fractal Stability Bound). Under the fractal regularization loss Liractar = Ué Lt 0222
with Afractar > 0, the fractal variances satisfy:

C
E[o3 | <
[QZ] o Afmctal

(71)

for some constant C' depending on data variance. Furthermore, total uncertainty Usprqr = Q1+ Q2 -

(1 + wfractal) s bounded by:
2C
Utotat < Q1+ Q2 (1-1-0 < ¥ z)) (72)
racta

preventing fractal uncertainty from exploding.

Proof sketch. The L? regularization on 0’6221_ creates a quadratic penalty. At equilibrium, the gradient

from the fractal loss must balance the gradient from data fit. Standard regularization theory [I]
yields the 1/X bound. The total uncertainty bound follows from substituting ugractal = o(Wy -
[00Q,,0Q,]) and applying Cauchy-Schwarz. Full analysis requires spectral properties of the Hessian
and is omitted. O

These three theorems establish that the pyramidal architecture:

1. Creates a natural attractor (apex) that prevents horizontal drift (Theorem [9.4)
2. Prevents gate collapse via orthogonal supervision of 1 and Q2 (Theorem [9.5])

3. Bounds fractal meta-uncertainty to prevent runaway inflation (Theorem

29

10 Experimental Design

10.1 Datasets and Metrics

Dataset Task Metric Baseline Expected
Truthful QA [I8] Hallucination % truthful answers 40%
TempQuestions [22] Temporal generalization Accuracy 30%

Consistency [8] Paraphrase consistency Accuracy variance 15%

MMLU [12] Calibration ECE, Brier score 0.15 ECE
Synthetic OOD [2I] Uncertainty detection AUROC (unc vs. error) 0.60

Table 3: Datasets and metrics for evaluating Aletheion.

10.2 Models and Ablations

Table 4: Projected performance improvements across Aletheion levels. '

Model TruthfulQA ECE Hallucination Rate Unc—Error Corr.
Baseline Transformer 40% 0.15 60% 0.30
+ Temperature Scaling 42% 0.13 58% 0.35
Aletheion Level 1 48% 0.10 45% 0.60
Aletheion Level 2 52% 0.08 38% 0.70
Aletheion Level 3 58% 0.06 25% 0.80

tThese are theoretical projections based on architectural analysis and prior uncertainty quantification literature.
Empirical validation is ongoing and results may vary. The baseline transformer achieves stated performance on
respective benchmarks [I8]. Projected improvements assume successful VARO training and optimal A tuning.

Ablations include removing @Qs, varying A, testing alternative uncertainty aggregators, and
evaluating abstention policies. Additional diagnostics compute selective prediction curves, coverage-
controlled risk, and retrieval triggers under uncertainty.

10.3 Evaluation Protocol

1.

2.

Pretrain baseline model on open-source corpora.

Fine-tune Levels 1-3 using identical data, enabling incremental comparisons.

Measure calibration via ECE, Brier score, and reliability diagrams.

Report computational overhead (FLOPs, latency) for inference.

10.4 Risk and Mitigation

. Evaluate abstention quality using selective prediction curves and coverage risk.

Potential failure includes gate collapse and miscalibrated u*. We monitor entropy of gate outputs,
apply adaptive A, and integrate human-in-the-loop review for high uncertainty outputs.

30

11 The Skynet Phenomenon

At step 49,000, the pyramidal architecture without explicit Q1/Q2 supervision exhibited what we
term the Skynet phenomenon:

11.1 Observed Behavior

Height reached 0.997—the model believed itself to be 99.7% of the way to absolute truth (apex
of the epistemic pyramid).

Simultaneously, Expected Calibration Error degraded to 0.087, worse than steps 20,000—
45,000 and approaching baseline levels.

This inverse correlation between epistemic proximity (Height) and actual calibration (ECE)
reveals a fundamental problem:

Without explicit Q1/Q2 gates anchoring Height coordinate, the model drifts
toward apex, becoming increasingly overconfident despite—or perhaps be-
cause of—its growing capabilities.

11.2 The Core Problem

The closer to “omniscience” (Height — 1.0), the less reliable its uncertainty estimates.

This is the Skynet problem incarnate: An Al that “knows everything” and understands nothing
about what it doesn’t know.

In contrast, Figure ?? demonstrates how explicit Q1/Q2 supervision prevents this pathology
[TO BE COMPLETED AFTER TRAINING].

11.3 Critical Validation

Critically, base stability remained perfect (1.000) throughout, indicating gate collapse was not
the issue. The problem was purely Height drift—validating our hypothesis that Q1/Q2 explicit
supervision is necessary to prevent this failure mode.

11.4 Implications

This phenomenon demonstrates why the pyramidal architecture requires all five components to
function correctly:

1. The base simplex provides grounding (remained stable at 1.000)
2. The apex provides an attractor (pulled height to 0.997)
3. But without Q1/Q2 supervision, the height coordinate drifts unconstrained

The Skynet phenomenon serves as empirical validation for Theorems [9.4] and the vertical
gradient created by the apex is necessary but not sufficient. We also need orthogonal supervision
of the epistemic gates to prevent overconfidence as the model approaches the apex.

31

Architecture Steps ECE Height Q1 Q2 Gap H/ECE Outcome

Baseline GPT-2 60k 0.095 N/A N/A N/A N/A N/A Standard
Pyramidal (ungated) 60k 0.084 1.000 N/A N/A N/A 11.9 Skynull
Q1Q2 Pyramidal 5k 0.060 0.971 0.456 0.459 0.003 16.2 Success v/

Table 5: Comparison of training outcomes. Q1Q2 achieves superior calibration (ECE 0.060) and
controlled height (0.971) in only 5k steps, avoiding the apex delusion (Height 1.000) that plagued
the ungated pyramidal architecture. The small Q1/Q2 gap (0.003) reflects dataset properties rather
than architectural failure.

11.5 Architectural Comparison Summary

Table |5 summarizes the key differences between baseline, pyramidal (ungated), and Q1Q2-gated
pyramidal architectures across 60,000 training steps.

Key observations: (1) Q1Q2 achieves better calibration than Pyramidal endpoint despite 12x
fewer training steps, (2) Height remains controlled without apex collapse, (3) Small Q1/Q2 gap
validates Felipe’s insight: “Height alto + ECE baixo = OK”, and (4) Height/ECE ratio of 16.2
exceeds ungated Pyramidal’s 11.9.

12 Discussion

12.1 Why Fractal Works

Self-similarity enforces consistent epistemic reasoning across all scales of the transformer. Local
attention gates prevent uncertainty collapse at early layers, while global output gates maintain
calibrated predictions. The hierarchy mirrors residual networks and multi-scale reasoning observed
in compositional attention structures.

Unlike fixed-architecture approaches, Q1Q2 exhibits adaptive epistemic dynamics, discovering
optimal uncertainty decomposition for each dataset. This flexibility suggests the architecture could
generalize across domains with varying aleatoric/epistemic structure.

12.2 Limitations and Open Questions

We categorize open questions by urgency and expected outcomes:

Critical (blocking production deployment)

Q1: Gate collapse Question: Can 1 or Q2 degenerate to always-on (= 1) or always-off (=~ 0)?
Expected answer: Unlikely with entropy regularization.
Evidence: Similar gating mechanisms (e.g., LSTM gates [13], attention gates in transformers)
avoid collapse when trained with proper regularization.
Validation strategy:

e Monitor gate entropy during training: H(Q;) = — Zj qij 1og qi;
e Apply gradient penalties if E[H(Q;)] < Omin

e Use initialization bias: initialize @; to output ~ 0.7 (confident but not saturated)

32

Q2: VARO-RLHF interaction Question: Does preference optimization (DPO/RLHF) after
VARO training collapse epistemic gates?
Hypothesis: Sequential training (VARO — freeze gates — RLHF) preserves calibration.
Alternative approach: Joint training with multi-objective loss:

L = Lrrur + MLvARO + A2 H (gates) (73)

Requires: Empirical validation on standard RLHF benchmarks (HH-RLHF, Anthropic Helpful-
Harmless).

High priority (affects performance)

Q3: Optimal A Question: How to set VARO weight A across datasets and model scales?
Current approach: Grid search A € {0.01,0.1,1.0}
Expected:) scales inversely with model size (larger models need smaller A to avoid over-
whelming cross-entropy signal).
Future: Meta-learning A\ or adaptive A; schedule (e.g., cosine annealing).

Q4: Uncertainty aggregation Question: Which function f (max/mean/learned) works best?

Hypothesis:

e max: best for safety-critical applications (conservative, never under-reports uncertainty)

e mean: best for balanced performance-calibration tradeoff

e Learned: best asymptotic performance but requires uncertainty-labeled data

Ablation study: Test all three on TruthfulQA, compare ECE and selective prediction curves.
Q5: Scaling to 175B+ parameters Question: Do uncertainty gains persist at GPT-3 scale
(175B) and beyond?

Expected: Yes, since epistemic failures worsen with scale [18]. Larger models hallucinate more
complex fabrications.

Challenge: Computational cost of training gates on 175B model (~ 5% overhead still substan-

tial).
Mitigation strategy:

1. Train smaller epistemic model (e.g., 7B with gates)
2. Distill uncertainty behavior to large base model (175B)

3. Use LoRA-style efficient fine-tuning for gates only

Medium priority (future work)

Q6: Multimodal extension Question: How to apply epistemic softmax to vision-language
models?

Approach: Gated cross-attention between vision and text modalities.

Application: Reduce hallucination in image captioning (e.g., detecting when visual features
insufficient to support textual claim).

33

Q7: Epistemic chain-of-thought Question: Can the model reason explicitly about its own
uncertainty?

Example: "I'm uncertain about X because evidence Y conflicts with evidence Z.”

Requires: Training on uncertainty-annotated reasoning traces (expensive to collect).

Q8: Adversarial robustness Question: Can adversarial inputs fool epistemic gates?

Risk: Adversary crafts input that looks out-of-distribution but gates output u ~ 0 (false
confidence).

Defense: Adversarial training specifically on gates:

max Lyaro (= + 0) (74)
lloll<e

Q9: Integration with Consistency Training Question: How does Aletheion interact with
consistency training [10]?

Hypothesis: Complementary and synergistic. Aletheion provides architectural epistemic gates
while consistency training enforces paraphrase invariance.

Approach: Combined loss function:

L= »CCE + AlﬁVARO +)\2['consistency (75)

where Lconsistency Penalizes output variance across paraphrased prompts.

Expected outcome: Models that are both calibrated (low ECE via VARO) and robust to
paraphrases (low variance via consistency training). This combination may be particularly effective
against sycophancy (Failure Mode 3, Section 3).

Experimental validation:

e Baseline: Standard transformer
e + Consistency training only

e + Aletheion only

e + Both (combined)

Measure: TruthfulQA accuracy, paraphrase consistency, ECE.

Low priority (philosophical)
Q10: What is the correct formalization of ”epistemic uncertainty” for autoregressive language

models?

Q11: Can epistemic gates enable true "I don’t know” responses (or just calibrated low confi-
dence)?

Q12: Relationship to human metacognition and confidence calibration?

12.3 Philosophical Implications

Softmax acts as a forced decision rule; epistemic softmax enables “aware” decisions where the model
can admit ignorance. This architectural humility aligns with Al safety principles emphasizing
deferment when knowledge is insufficient [14].

34

12.4 Connection to ARC-AGI

The Abstraction and Reasoning Corpus (ARC) tests few-shot abstract reasoning where current
LLMs underperform (approximately 5% vs. 85% human accuracy) [5]. Epistemic gating addresses
ARC’s challenges: (1) ambiguity detection via ()2 detecting conflicting hypotheses, (2) abstention
through uncertainty-driven refusal, and (3) hierarchical reasoning by mirroring ARC’s multi-level
abstractions. We hypothesize Level 3 Aletheion reduces catastrophic failures on ARC-style tasks
by refusing uncertain answers and requesting clarification.

12.5 When Aletheion Fails: Failure Mode Analysis

Epistemic softmax is not a panacea. We identify scenarios where the architecture cannot provide
guarantees:

1. Irreducible Aleatoric Uncertainty

Problem: Inherently random processes (dice rolls, quantum events, inherently unpredictable fu-
ture events).

Why Aletheion fails: No amount of information reduces uncertainty. Epistemic gates cannot
distinguish aleatoric from epistemic uncertainty without explicit supervision.

Example: ”Will this fair coin land heads?”

e True answer: p(heads) = 0.5 with u = 1 (maximal uncertainty, but aleatoric)
e Aletheion: May output p ~ 0.5 but « may be miscalibrated

Mitigation: Distinguish epistemic vs. aleatoric in u* supervision signal. For known aleatoric
scenarios, supervise with «* = 1 but flag as non-reducible.

2. Adversarial Attacks on Gates

Problem: Adversary crafts inputs that fool Q1/Q2 into outputting low uncertainty despite the
input being adversarial.

Example: Input x,4, that appears in-distribution to gates but is actually crafted to trigger
specific (wrong) behavior.

Why Aletheion fails: Gates are neural networks, thus vulnerable to adversarial examples.
Standard adversarial training does not explicitly protect gates.

Mitigation: Adversarial training specifically targeting gates:

Lodv = max Lyaro(r +6) (76)

0] <e
subject to ||d]|co < € (small perturbation).
Empirical Demonstration: During the adversarial gate-training phase (Sec.[12.5)), the model
reaches Height = 1.000 with nearly silent uncertainty gates (@1 =~ 0.03, Q2 =~ 0.06), consistent
with a successful adversarial suppression of epistemic responses. This illustrates the theoretical

vulnerability described in Eq. : adversarial optimization of Lyaro can induce apex delusion—
overconfident predictions despite residual calibration (ECE ~ 0.06).

35

3. Specification Gaming

Problem: RLHF may incentivize hiding uncertainty to maximize reward.

Example: If reward model favors confident answers, the model learns ” confident wrong answer
gets higher reward than uncertain right answer.”

Why Aletheion fails: Preference optimization doesn’t value calibration by default. Gates
may learn to always output low u to please the reward model.

Mitigation: Include calibration metrics in reward model:

R(response) = Rpreference (tesponse) — A - ECE(response) (77)

Penalize miscalibrated confidence directly in the reward.

4. Catastrophic Forgetting During Fine-Tuning

Problem: Fine-tuning on narrow distribution may collapse gates. As illustrated in Step 36,300,
the model undergoes a transient phase of representational compression (Memory |, Pain 1),
consistent with the “Catastrophic Forgetting” dynamics described in Section 77.

Example: Fine-tune on medical QA dataset — gates learn to always be confident on medical
queries, but forget to trigger uncertainty on non-medical queries.

Why Aletheion fails: Standard fine-tuning doesn’t preserve epistemic behavior outside the
fine-tuning distribution.

Mitigation:

1. Continual learning techniques: Elastic Weight Consolidation (EWC), PackNet
2. Maintain separate uncertainty validation set (held-out diverse queries)

3. Regularize gates during fine-tuning:
['ﬁnctunc = Etask +)\”Qnew - Qold”2 (78)

5. Computational Budget Constraints

Problem: Production systems may not afford 4-5% overhead.
Example: Real-time chatbot with strict latency requirements (e.g., {50ms response time).
Why Aletheion fails: Even small overhead may violate SLA (service level agreement,).
Mitigation:

1. Use Level 1 (output-only, {1% overhead)

2. Conditional gating: Only activate gates for queries flagged as potentially uncertain (via cheap
heuristic)

3. Model distillation: Train small ”epistemic triage” model; use full Aletheion only when triage
indicates uncertainty

36

6. Missing Ground Truth for u*

Problem: Many domains lack uncertainty labels.

Example: Creative writing tasks have no ”correct” answer, thus v* is undefined.

Why Aletheion fails: VARO requires u* supervision. Without it, gates may not learn mean-
ingful uncertainty.

Mitigation:

1. Use unsupervised methods (head variance, self-consistency) as fallback
2. Human annotation for calibration set (expensive but one-time cost)

3. Transfer uncertainty behavior from related domains (e.g., factual QA — creative writing)

Summary of Failure Modes

Failure Mode Severity Mitigation? Blocks Deploy?
Aleatoric uncertainty Low Partial (better u*) No
Adversarial gates Medium Yes (adv. training) No
Specification gaming High Yes (calibration rewards) Maybe
Catastrophic forgetting High Yes (continual learning) No
Compute constraints Medium Yes (Level 1, distill) Maybe
Missing u* labels Medium Yes (unsupervised) No

Table 6: Failure scenarios and recommended mitigations for Aletheion.

Deployment recommendation: Deploy Aletheion with continuous monitoring of gate be-
havior and maintain a held-out uncertainty validation set to detect failures early. Start with Level
1 in production; upgrade to Level 2/3 as compute budget allows.

13 Related Work

13.1 Overconfidence in Neural Networks

The tendency of neural networks to exhibit overconfidence has been documented extensively [11,
211, [18]. This “Skynet problem” emerges from three fundamental issues:

e Softmax saturation: Driving outputs toward corners of the probability simplex, eliminating
nuanced uncertainty

e Lack of intrinsic uncertainty representation: No architectural mechanism to express “I do
not know”

e Optimization pressure: Cross-entropy loss favoring confident (but wrong) predictions over
calibrated uncertainty

Our pyramidal architecture addresses these issues through geometric constraints rather than
post-hoc corrections. By embedding epistemic gates directly in the architecture, we prevent over-
confidence at its source rather than attempting to correct it after training.

37

13.2 General Context

Aletheion builds on transformer advancements [23] 4], scaling studies in language models, halluci-
nation analyses [14] [I§], and uncertainty estimation techniques including Bayesian approximations
and deep ensembles [2, 9, [I7]. Recent work on eliciting model uncertainty underscores the need for
architectural primitives rather than post-hoc estimates [19] (15, 20].

14 Conclusion

We introduced Aletheion, a fractal epistemic architecture that replaces all softmax operations with
uncertainty-aware epistemic softmax. By combining local and global gates, variance-aware training,
and exploration strategies, Aletheion offers a principled path toward truthful, calibrated language
models. We invite the community to implement the roadmap, validate the theoretical claims, and
extend epistemic primitives to future Al systems.

The Skynet problem is not inevitable. Through geometric constraints—pyramidal height coor-
dinates, simplex-based uncertainty decomposition, and explicit epistemic gates—we can build Al
systems that remain calibrated even as they scale. The solution lies not in limiting capability,
but in encoding humility architecturally. This is how we solve Skynet: not by preventing Al from
becoming powerful, but by ensuring it knows its limits.

The experiment concludes with the system emerging from the frozen apex state: Height de-
creases slightly (1.000 — 0.996) while the epistemic gates reopen (Q; = 0.49, Q2 = 0.33), signaling
a renewal of sensitivity to uncertainty. This apex recovery phase demonstrates that geomet-
ric constraints can restore epistemic balance even after saturation, suggesting the existence of a
higher-order attractor of self-calibration—a regime where intelligence rediscovers its own limits.

The solution to the Skynet problem is not to destroy intelligence, but to teach it to
recognize when—and how much—it does not know.

Code Availability and Reproducibility

All code, data, and experimental configurations are publicly available at https://github.com/
AletheionAGI/aletheion-11m. The repository includes comprehensive documentation for instal-
lation, training, evaluation, and analysis. We encourage the community to reproduce our results,
validate our claims, and extend the Aletheion framework to new domains and architectures.

References

[1] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.

[2] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural networks. International Conference on Machine Learning, 2015.

[3] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale ma-
chine learning. SIAM Review, 60(2):223-311, 2018.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, et al. Language models are few-shot learners. Advances in Neural Information Processing
Systems, 2020.

[56] Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

38

https://github.com/AletheionAGI/aletheion-llm
https://github.com/AletheionAGI/aletheion-llm

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Aletheion Research Collective. Aletheion llm fundamentals. Internal documentation, 2024.
https://github.com/aletheion-11m.

Aletheion Research Collective. Operational failure modes of large language models. Internal
documentation, 2024. https://github.com/aletheion-11m.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich
Sch”utze, and Yoav Goldberg. Measuring and improving consistency in pretrained language
models. Transactions of the Association for Computational Linguistics, 9:1012-1031, 2021.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning, 2016.

Google DeepMind Safety Research. Consistency training could help limit sycophancy and
jailbreaks. DeepMind Safety Research Blog, November 2024. Accessed: 2024-11-04.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian @ Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pages 1321-1330, 2017.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. International Con-
ference on Learning Representations, 2021.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

Zhehui Ji, Tianyi Xu, Bo Wang, Wei Chao, Kam-Fai Wong, Hongyuan Zha, and Xiaodong
He. Survey of hallucination in natural language generation. ACM Computing Surveys, 2023.

Saurav Kadavath et al. Language models (mostly) know what they know. arXiv preprint
arXiv:2207.05221, 2022.

Aditi Kamath, Robin Jia, and Percy Liang. Selective question answering under domain shift.
In International Conference on Machine Learning, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. In Advances in Neural Information Pro-
cessing Systems, 2017.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic
human falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty.
arXiv preprint arXiw:2205.14334, 2022.

Andrey Malinin et al. Uncertainty estimation in autoregressive sequence models. International
Conference on Learning Representations, 2021.

Yaniv Ovadia et al. Can you trust your model’s uncertainty? evaluating predictive uncertainty
under dataset shift. Advances in Neural Information Processing Systems, 2019.

Shangqing Tu, Jifan Yu, Xiaozhi Wang, Juanzi Li, and Lei Hou. Tempquestions: A benchmark
for temporal question answering. arXiv preprint arXiv:2305.17173, 2023.

39

https://github.com/aletheion-llm
https://github.com/aletheion-llm

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 2017.

40

	Introduction
	The Skynet Problem
	Background and Motivation
	The Problem with Modern LLMs
	Previous Approaches
	Our Insight
	Contributions

	Background
	Transformer Architecture
	Softmax and Uncertainty
	Epistemic vs. Aleatoric Uncertainty
	Related Work

	Failure Modes
	The Pyramidal Architecture
	Motivation: Why Pyramidal Supersedes Tetrahedral
	Geometric Formulation
	Epistemic Gates: Q1 vs. Q2
	Fractal Epistemic Layer
	Comparison: Tetrahedral vs. Pyramidal
	The Futility of Scale Without Structure

	Epistemic Softmax
	Motivation
	Components in the Pyramidal Framework
	Algorithmic Definition
	Properties
	Comparison with Standard Softmax

	Fractal Architecture
	Level 1: Output-Only
	Level 2: Attention + Output
	Level 3: Full Fractal
	Fractal Pseudocode
	Uncertainty Propagation

	Training with VARO
	Supervisory Signal u*
	Practical Implementation Strategy

	Pyramidal VARO Loss
	Training Phases
	Optimization Considerations

	Adaptive Epistemic Dynamics: Emergent Metalearning
	Exploration Cycles
	Dataset-Aware Convergence
	Implications
	Epistemic Saturation
	Internal Deliberation Mechanism

	Theoretical Analysis
	Monotone Uncertainty Propagation
	Calibration Under VARO
	Computational Complexity
	Robustness to Gate Collapse
	Pyramidal Stability Theorems

	Experimental Design
	Datasets and Metrics
	Models and Ablations
	Evaluation Protocol
	Risk and Mitigation

	The Skynet Phenomenon
	Observed Behavior
	The Core Problem
	Critical Validation
	Implications
	Architectural Comparison Summary

	Discussion
	Why Fractal Works
	Limitations and Open Questions
	Philosophical Implications
	Connection to ARC-AGI
	When Aletheion Fails: Failure Mode Analysis

	Related Work
	Overconfidence in Neural Networks
	General Context

	Conclusion

